Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative approximation of the Burgers and Keller-Segel equations by moderately interacting particles (2004.03177v3)

Published 7 Apr 2020 in math.PR

Abstract: In this work we obtain rates of convergence for two moderately interacting stochastic particle systems with singular kernels associated to the viscous Burgers and Keller-Segel equations. The main novelty of this work is to consider a non-locally integrable kernel. Namely for the viscous Burgers equation in $\mathbb{R}$, we obtain almost sure convergence of the mollified empirical measure to the solution of the PDE in some Bessel space with a rate of convergence of order $N{-1/8}$, on any time interval. The same holds for the genuine empirical measure in Wasserstein distance. In the case of the Keller-Segel equation on a $d$-dimensional torus, we obtain almost sure convergence of the mollified empirical measure to the solution of the PDE in some $Lq$ space with a rate of order $N{-\frac{1}{2d+1}}$. The result holds up to the maximal existence time of the PDE, for any value of the chemo-attractant sensitivity $\chi$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Fourier analysis and nonlinear partial differential equations, volume 343 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011.
  2. P. Biler. Mathematical challenges in the theory of chemotaxis. Ann. Math. Sil., 32(1):43–63, 2018.
  3. V. I. Bogachev. Measure theory. Vol. II. Springer-Verlag, Berlin, 2007.
  4. M. Bossy and D. Talay. Convergence rate for the approximation of the limit law of weakly interacting particles: application to the Burgers equation. Ann. Appl. Probab., 6(3):818–861, 1996.
  5. M. Bossy and D. Talay. A stochastic particle method for the McKean-Vlasov and the Burgers equation. Math. Comp., 66(217):157–192, 1997.
  6. Mean field limit and quantitative estimates with singular attractive kernels. Duke Math. J., 172(13):2591–2641, 2023.
  7. P. Calderoni and M. Pulvirenti. Propagation of chaos for Burgers’ equation. Ann. Inst. H. Poincaré Sect. A (N.S.), 39(1):85–97, 1983.
  8. P. Cattiaux and L. Pédèches. The 2-D stochastic Keller-Segel particle model: existence and uniqueness. ALEA, 13:447–463, 2016.
  9. J. D. Cole. On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math., 9:225–236, 1951.
  10. S. S. Dragomir. Some Gronwall type inequalities and applications. Nova Science Publishers, Inc., Hauppauge, NY, 2003.
  11. F. Flandoli and M. Leocata. A particle system approach to aggregation phenomena. J. Appl. Probab., 56(1):282–306, 2019.
  12. Uniform convergence of proliferating particles to the FKPP equation. J. Math. Anal. Appl., 473(1):27–52, 2019.
  13. Uniform approximation of 2 dimensional Navier-Stokes equation by stochastic interacting particle systems. SIAM J. Math. Anal., 52(6):5339–5362, 2020.
  14. N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields, 162(3-4):707–738, 2015.
  15. N. Fournier and B. Jourdain. Stochastic particle approximation of the Keller–Segel equation and two-dimensional generalization of Bessel processes. Ann. Appl. Probab., 27(5):2807–2861, 2017.
  16. N. Fournier and Y. Tardy. Collisions of the supercritical Keller-Segel particle system. J. Eur. Math. Soc. (to appear), arXiv:2110.08490, 2023.
  17. Multidimensional stochastic processes as rough paths, volume 120 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.
  18. A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J., 20:565–578, 1970/71.
  19. E. Gutkin and M. Kac. Propagation of chaos and the Burgers equation. SIAM J. Appl. Math., 43(4):971–980, 1983.
  20. B. Jourdain and S. Méléard. Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann. Inst. H. Poincaré Probab. Statist., 34(6):727–766, 1998.
  21. P. G. Lemarié-Rieusset. Recent developments in the Navier-Stokes problem, volume 431 of Chapman & Hall/CRC Research Notes in Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2002.
  22. H. P. McKean, Jr. Propagation of chaos for a class of non-linear parabolic equations. In Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), Lecture Series in Differential Equations, Session 7, pages 41–57. Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, Arlington, VA, 1967.
  23. S. Méléard and S. Roelly-Coppoletta. A propagation of chaos result for a system of particles with moderate interaction. Stochastic Process. Appl., 26(2):317–332, 1987.
  24. K. Oelschläger. A law of large numbers for moderately interacting diffusion processes. Z. Wahrsch. Verw. Gebiete, 69(2):279–322, 1985.
  25. Quantitative particle approximation of nonlinear Fokker-Planck equations with singular kernel. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 24(2):691–749, 2023.
  26. H. Osada and S. Kotani. Propagation of chaos for the Burgers equation. J. Math. Soc. Japan, 37(2):275–294, 1985.
  27. B. Perthame. PDE models for chemotactic movements: parabolic, hyperbolic and kinetic. Appl. Math., 49(6):539–564, 2004.
  28. Discrete-time simulation of stochastic Volterra equations. Stochastic Process. Appl., 141:109–138, 2021.
  29. H.-J. Schmeisser and H. Triebel. Topics in Fourier analysis and function spaces. A Wiley-Interscience Publication. John Wiley & Sons, Ltd., Chichester, 1987.
  30. T. Senba and T. Suzuki. Weak solutions to a parabolic-elliptic system of chemotaxis. J. Funct. Anal., 191(1):17–51, 2002.
  31. M. Simon and C. Olivera. Non-local conservation law from stochastic particle systems. J. Dynam. Differential Equations, 30(4):1661–1682, 2018.
  32. A.-S. Sznitman. A propagation of chaos result for Burgers’ equation. Probab. Theory Relat. Fields, 71(4):581–613, 1986.
  33. Y. Tardy. Convergence of the empirical measure for the Keller-Segel model in both subcritical and critical cases. Preprint arXiv:2205.04968, 2022.
  34. H. Triebel. Interpolation theory, function spaces, differential operators, volume 18 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam-New York, 1978.
  35. H. Triebel. Theory of function spaces, volume 78 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1983.
  36. Stochastic integration in UMD Banach spaces. Ann. Probab., 35(4):1438–1478, 2007.
  37. A. J. Veretennikov. Strong solutions and explicit formulas for solutions of stochastic integral equations. Mat. Sb. (N.S.), 111(153)(3):434–452, 480, 1980.
Citations (1)

Summary

We haven't generated a summary for this paper yet.