Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Method for Curation of Web-Scraped Face Image Datasets (2004.03074v1)

Published 7 Apr 2020 in cs.CV and cs.LG

Abstract: Web-scraped, in-the-wild datasets have become the norm in face recognition research. The numbers of subjects and images acquired in web-scraped datasets are usually very large, with number of images on the millions scale. A variety of issues occur when collecting a dataset in-the-wild, including images with the wrong identity label, duplicate images, duplicate subjects and variation in quality. With the number of images being in the millions, a manual cleaning procedure is not feasible. But fully automated methods used to date result in a less-than-ideal level of clean dataset. We propose a semi-automated method, where the goal is to have a clean dataset for testing face recognition methods, with similar quality across men and women, to support comparison of accuracy across gender. Our approach removes near-duplicate images, merges duplicate subjects, corrects mislabeled images, and removes images outside a defined range of pose and quality. We conduct the curation on the Asian Face Dataset (AFD) and VGGFace2 test dataset. The experiments show that a state-of-the-art method achieves a much higher accuracy on the datasets after they are curated. Finally, we release our cleaned versions of both datasets to the research community.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kai Zhang (542 papers)
  2. VĂ­tor Albiero (20 papers)
  3. Kevin W. Bowyer (50 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.