Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some partition and analytical identities arising from Alladi, Andrews, Gordon bijections (2004.02666v1)

Published 6 Apr 2020 in math.NT and math.CO

Abstract: In a work of 1995, Alladi, Andrews, and Gordon provided a generalization of the two Capparelli identities involving certain classes of integer partitions. Inspired by that contribution, in particular as regards the general setting and the tools the authors employed, we obtain new partition identities by identifying further sets of partitions that can be explicitly put into a one-to-one correspondence by the method described in the 1995 paper. As a further result, although of a different nature, we obtain an analytical identity of Rogers-Ramanujan type, involving generating functions, for a class of partition identities already found in that paper and that generalize the first Capparelli identity and include it as a particular case. To achieve this, we apply the same strategy as Kanade and Russel did in a paper. This method relies on the use of jagged partitions that can be seen as a more general kind of integer partitions.

Summary

We haven't generated a summary for this paper yet.