Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dualize, Split, Randomize: Toward Fast Nonsmooth Optimization Algorithms (2004.02635v4)

Published 3 Apr 2020 in math.OC, cs.LG, and stat.ML

Abstract: We consider minimizing the sum of three convex functions, where the first one F is smooth, the second one is nonsmooth and proximable and the third one is the composition of a nonsmooth proximable function with a linear operator L. This template problem has many applications, for instance, in image processing and machine learning. First, we propose a new primal-dual algorithm, which we call PDDY, for this problem. It is constructed by applying Davis-Yin splitting to a monotone inclusion in a primal-dual product space, where the operators are monotone under a specific metric depending on L. We show that three existing algorithms (the two forms of the Condat-Vu algorithm and the PD3O algorithm) have the same structure, so that PDDY is the fourth missing link in this self-consistent class of primal-dual algorithms. This representation eases the convergence analysis: it allows us to derive sublinear convergence rates in general, and linear convergence results in presence of strong convexity. Moreover, within our broad and flexible analysis framework, we propose new stochastic generalizations of the algorithms, in which a variance-reduced random estimate of the gradient of F is used, instead of the true gradient. Furthermore, we obtain, as a special case of PDDY, a linearly converging algorithm for the minimization of a strongly convex function F under a linear constraint; we discuss its important application to decentralized optimization.

Citations (18)

Summary

We haven't generated a summary for this paper yet.