Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fusing Online Gaussian Process-Based Learning and Control for Scanning Quantum Dot Microscopy (2004.02488v1)

Published 6 Apr 2020 in eess.SY, cs.SY, and physics.ins-det

Abstract: Elucidating electrostatic surface potentials contributes to a deeper understanding of the nature of matter and its physicochemical properties, which is the basis for a wide field of applications. Scanning quantum dot microscopy, a recently developed technique allows to measure such potentials with atomic resolution. For an efficient deployment in scientific practice, however, it is essential to speed up the scanning process. To this end we employ a two-degree-of-freedom control paradigm, in which a Gaussian process is used as the feedforward part. We present a tailored online learning scheme of the Gaussian process, adapted to scanning quantum dot microscopy, that includes hyperparameter optimization during operation to enable fast and precise scanning of arbitrary surface structures. For the potential application in practice, the accompanying computational cost is reduced evaluating different sparse approximation approaches. The fully independent training conditional approximation, used on a reduced set of active training data, is found to be the most promising approach.

Summary

We haven't generated a summary for this paper yet.