Papers
Topics
Authors
Recent
2000 character limit reached

Asymptotic proximal point methods: finding the global minima with linear convergence for a class of multiple minima problems

Published 5 Apr 2020 in math.OC, cs.NA, and math.NA | (2004.02210v4)

Abstract: We propose and analyze asymptotic proximal point (APP) methods to find the global minimizer for a class of nonconvex, nonsmooth, or even discontinuous multiple minima functions. The method is based on an asymptotic representation of nonconvex proximal points so that it can find the global minimizer without being trapped in saddle points, local minima, or even discontinuities. Our main result shows that the method enjoys the global linear convergence for such a class of functions. Furthermore, the method is derivative-free and its per-iteration cost, i.e., the number of function evaluations, is also bounded, so it has a complexity bound $\mathcal{O}(\log\frac{1}{\epsilon})$ for finding a point such that the gap between this point and the global minimizer is less than $\epsilon>0$. Numerical experiments and comparisons in various dimensions from $2$ to $500$ demonstrate the benefits of the method.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.