Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
10 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Learning Dynamics for Neural Machine Translation (2004.02199v1)

Published 5 Apr 2020 in cs.CL and cs.LG

Abstract: Despite the great success of NMT, there still remains a severe challenge: it is hard to interpret the internal dynamics during its training process. In this paper we propose to understand learning dynamics of NMT by using a recent proposed technique named Loss Change Allocation (LCA)~\citep{lan-2019-loss-change-allocation}. As LCA requires calculating the gradient on an entire dataset for each update, we instead present an approximate to put it into practice in NMT scenario. %motivated by the lesson from sgd. Our simulated experiment shows that such approximate calculation is efficient and is empirically proved to deliver consistent results to the brute-force implementation. In particular, extensive experiments on two standard translation benchmark datasets reveal some valuable findings.

Citations (3)

Summary

We haven't generated a summary for this paper yet.