Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exceptional points of Bloch eigenmodes on a dielectric slab with a periodic array of cylinders (2004.02130v1)

Published 5 Apr 2020 in physics.optics

Abstract: Eigenvalue problems for electromagnetic resonant states on open dielectric structures are non-Hermitian and may have exceptional points (EPs) at which two or more eigenfrequencies and the corresponding eigenfunctions coalesce. EPs of resonant states for photonic structures give rise to a number of unusual wave phenomena and have potentially important applications. It is relatively easy to find a few EPs for a structure with parameters, but isolated EPs provide no information about their formation and variation in parameter space, and it is always difficult to ensure that all EPs in a domain of the parameter space are found. In this paper, we analyze EPs for a dielectric slab containing a periodic array of circular cylinders. By tuning the periodic structure towards a uniform slab and following the EPs continuously, we are able to obtain a precise condition about the limiting uniform slab, and thereby order and classify EPs as tracks with their endpoints determined analytically. It is found that along each track, a second order EP of resonant states (with a complex frequency) is transformed to a special kind of third order EP with a real frequency via a special fourth order EP. Our study provides a clear and complete picture for EPs in parameter space, and gives useful guidance to their practical applications.

Summary

We haven't generated a summary for this paper yet.