Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cell Segmentation by Combining Marker-Controlled Watershed and Deep Learning (2004.01607v1)

Published 3 Apr 2020 in eess.IV and cs.CV

Abstract: We propose a cell segmentation method for analyzing images of densely clustered cells. The method combines the strengths of marker-controlled watershed transformation and a convolutional neural network (CNN). We demonstrate the method universality and high performance on three Cell Tracking Challenge (CTC) datasets of clustered cells captured by different acquisition techniques. For all tested datasets, our method reached the top performance in both cell detection and segmentation. Based on a series of experiments, we observed: (1) Predicting both watershed marker function and segmentation function significantly improves the accuracy of the segmentation. (2) Both functions can be learned independently. (3) Training data augmentation by scaling and rigid geometric transformations is superior to augmentation that involves elastic transformations. Our method is simple to use, and it generalizes well for various data with state-of-the-art performance.

Citations (21)

Summary

We haven't generated a summary for this paper yet.