Papers
Topics
Authors
Recent
2000 character limit reached

Predicting rice blast disease: machine learning versus process based models

Published 3 Apr 2020 in q-bio.QM, cs.LG, and stat.ML | (2004.01602v1)

Abstract: Rice is the second most important cereal crop worldwide, and the first in terms of number of people who depend on it as a major staple food. Rice blast disease is the most important biotic constraint of rice cultivation causing each year millions of dollars of losses. Despite the efforts for breeding new resistant varieties, agricultural practices and chemical control are still the most important methods for disease management. Thus, rice blast forecasting is a primary tool to support rice growers in controlling the disease. In this study, we compared four models for predicting rice blast disease, two operational process-based models (Yoshino and WARM) and two approaches based on machine learning algorithms (M5Rules and RNN), the former inducing a rule-based model and the latter building a neural network. In situ telemetry is important to obtain quality in-field data for predictive models and this was a key aspect of the RICE-GUARD project on which this study is based. According to the authors, this is the first time process-based and machine learning modelling approaches for supporting plant disease management are compared.

Citations (43)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.