Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics (2004.01509v1)

Published 21 Mar 2020 in q-fin.ST, cs.LG, econ.GN, q-fin.EC, and stat.ML

Abstract: The popularity of deep reinforcement learning (DRL) methods in economics have been exponentially increased. DRL through a wide range of capabilities from reinforcement learning (RL) and deep learning (DL) for handling sophisticated dynamic business environments offers vast opportunities. DRL is characterized by scalability with the potential to be applied to high-dimensional problems in conjunction with noisy and nonlinear patterns of economic data. In this work, we first consider a brief review of DL, RL, and deep RL methods in diverse applications in economics providing an in-depth insight into the state of the art. Furthermore, the architecture of DRL applied to economic applications is investigated in order to highlight the complexity, robustness, accuracy, performance, computational tasks, risk constraints, and profitability. The survey results indicate that DRL can provide better performance and higher accuracy as compared to the traditional algorithms while facing real economic problems at the presence of risk parameters and the ever-increasing uncertainties.

Citations (141)

Summary

We haven't generated a summary for this paper yet.