Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Adversarial Networks for Crystal Structure Prediction (2004.01396v4)

Published 3 Apr 2020 in cond-mat.mtrl-sci and physics.comp-ph

Abstract: The constant demand for new functional materials calls for efficient strategies to accelerate the materials design and discovery. In addressing this challenge, machine learning generative models can offer promising opportunities since they allow for the continuous navigation of chemical space via low dimensional latent spaces. In this work, we employ a crystal representation that is inversion-free with a low memory requirement based on unit cell information and fractional atomic coordinates, and build the generative adversarial network (GAN) for crystal structures. The proposed model is then applied to the Mg-Mn-O ternary inorganic materials system to generate novel structures with application as potential water-splitting photoanodes, and combined with the evaluation of their photoanode properties for high-throughput virtual screening (HTVS). The generative-HTVS system that we built predicts 23 new crystal structures with a reasonable predicted stability and bandgap. These findings suggest that the proposed generative model can be an effective way to explore hidden portions of the chemical space, an area that is usually unreachable when conventional substitution-based discovery is employed.

Citations (157)

Summary

We haven't generated a summary for this paper yet.