Generative Adversarial Networks for Crystal Structure Prediction (2004.01396v4)
Abstract: The constant demand for new functional materials calls for efficient strategies to accelerate the materials design and discovery. In addressing this challenge, machine learning generative models can offer promising opportunities since they allow for the continuous navigation of chemical space via low dimensional latent spaces. In this work, we employ a crystal representation that is inversion-free with a low memory requirement based on unit cell information and fractional atomic coordinates, and build the generative adversarial network (GAN) for crystal structures. The proposed model is then applied to the Mg-Mn-O ternary inorganic materials system to generate novel structures with application as potential water-splitting photoanodes, and combined with the evaluation of their photoanode properties for high-throughput virtual screening (HTVS). The generative-HTVS system that we built predicts 23 new crystal structures with a reasonable predicted stability and bandgap. These findings suggest that the proposed generative model can be an effective way to explore hidden portions of the chemical space, an area that is usually unreachable when conventional substitution-based discovery is employed.