Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 106 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

Unsupervised Real-world Image Super Resolution via Domain-distance Aware Training (2004.01178v1)

Published 2 Apr 2020 in cs.CV

Abstract: These days, unsupervised super-resolution (SR) has been soaring due to its practical and promising potential in real scenarios. The philosophy of off-the-shelf approaches lies in the augmentation of unpaired data, i.e. first generating synthetic low-resolution (LR) images $\mathcal{Y}g$ corresponding to real-world high-resolution (HR) images $\mathcal{X}r$ in the real-world LR domain $\mathcal{Y}r$, and then utilizing the pseudo pairs ${\mathcal{Y}g, \mathcal{X}r}$ for training in a supervised manner. Unfortunately, since image translation itself is an extremely challenging task, the SR performance of these approaches are severely limited by the domain gap between generated synthetic LR images and real LR images. In this paper, we propose a novel domain-distance aware super-resolution (DASR) approach for unsupervised real-world image SR. The domain gap between training data (e.g. $\mathcal{Y}g$) and testing data (e.g. $\mathcal{Y}r$) is addressed with our \textbf{domain-gap aware training} and \textbf{domain-distance weighted supervision} strategies. Domain-gap aware training takes additional benefit from real data in the target domain while domain-distance weighted supervision brings forward the more rational use of labeled source domain data. The proposed method is validated on synthetic and real datasets and the experimental results show that DASR consistently outperforms state-of-the-art unsupervised SR approaches in generating SR outputs with more realistic and natural textures.

Citations (115)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.