Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information State Embedding in Partially Observable Cooperative Multi-Agent Reinforcement Learning (2004.01098v3)

Published 2 Apr 2020 in cs.AI, cs.LG, and cs.MA

Abstract: Multi-agent reinforcement learning (MARL) under partial observability has long been considered challenging, primarily due to the requirement for each agent to maintain a belief over all other agents' local histories -- a domain that generally grows exponentially over time. In this work, we investigate a partially observable MARL problem in which agents are cooperative. To enable the development of tractable algorithms, we introduce the concept of an information state embedding that serves to compress agents' histories. We quantify how the compression error influences the resulting value functions for decentralized control. Furthermore, we propose an instance of the embedding based on recurrent neural networks (RNNs). The embedding is then used as an approximate information state, and can be fed into any MARL algorithm. The proposed embed-then-learn pipeline opens the black-box of existing (partially observable) MARL algorithms, allowing us to establish some theoretical guarantees (error bounds of value functions) while still achieving competitive performance with many end-to-end approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Weichao Mao (11 papers)
  2. Kaiqing Zhang (70 papers)
  3. Erik Miehling (22 papers)
  4. Tamer Başar (200 papers)
Citations (21)