Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mirrorless Mirror Descent: A Natural Derivation of Mirror Descent (2004.01025v3)

Published 2 Apr 2020 in cs.LG, math.OC, and stat.ML

Abstract: We present a primal only derivation of Mirror Descent as a "partial" discretization of gradient flow on a Riemannian manifold where the metric tensor is the Hessian of the Mirror Descent potential. We contrast this discretization to Natural Gradient Descent, which is obtained by a "full" forward Euler discretization. This view helps shed light on the relationship between the methods and allows generalizing Mirror Descent to general Riemannian geometries, even when the metric tensor is {\em not} a Hessian, and thus there is no "dual."

Citations (25)

Summary

We haven't generated a summary for this paper yet.