Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tracking by Instance Detection: A Meta-Learning Approach (2004.00830v1)

Published 2 Apr 2020 in cs.CV

Abstract: We consider the tracking problem as a special type of object detection problem, which we call instance detection. With proper initialization, a detector can be quickly converted into a tracker by learning the new instance from a single image. We find that model-agnostic meta-learning (MAML) offers a strategy to initialize the detector that satisfies our needs. We propose a principled three-step approach to build a high-performance tracker. First, pick any modern object detector trained with gradient descent. Second, conduct offline training (or initialization) with MAML. Third, perform domain adaptation using the initial frame. We follow this procedure to build two trackers, named Retina-MAML and FCOS-MAML, based on two modern detectors RetinaNet and FCOS. Evaluations on four benchmarks show that both trackers are competitive against state-of-the-art trackers. On OTB-100, Retina-MAML achieves the highest ever AUC of 0.712. On TrackingNet, FCOS-MAML ranks the first on the leader board with an AUC of 0.757 and the normalized precision of 0.822. Both trackers run in real-time at 40 FPS.

Citations (143)

Summary

We haven't generated a summary for this paper yet.