Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stable Gradient Flow Discretizations for Simulating Bilayer Plate Bending with Isometry and Obstacle Constraints (2004.00341v1)

Published 1 Apr 2020 in math.NA and cs.NA

Abstract: Bilayer plates are compound materials that exhibit large bending deformations when exposed to environmental changes that lead to different mechanical responses in the involved materials. In this article a new numerical method which is suitable for simulating the isometric deformation induced by a given material mismatch in a bilayer plate is discussed. A dimensionally reduced formulation of the bending energy is discretized generically in an abstract setting and specified for discrete Kirchhoff triangles; convergence towards the continuous formulation is proved. A practical semi-implicit discrete gradient flow employing a linearization of the isometry constraint is proposed as an iterative method for the minimization of the bending energy; stability and a bound on the violation of the isometry constraint are proved. The incorporation of obstacles is discussed and the practical performance of the method is illustrated with numerical experiments involving the simulation of large bending deformations and investigation of contact phenomena.

Citations (15)

Summary

We haven't generated a summary for this paper yet.