Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Select Base Classes for Few-shot Classification (2004.00315v1)

Published 1 Apr 2020 in cs.CV, cs.LG, and stat.ML

Abstract: Few-shot learning has attracted intensive research attention in recent years. Many methods have been proposed to generalize a model learned from provided base classes to novel classes, but no previous work studies how to select base classes, or even whether different base classes will result in different generalization performance of the learned model. In this paper, we utilize a simple yet effective measure, the Similarity Ratio, as an indicator for the generalization performance of a few-shot model. We then formulate the base class selection problem as a submodular optimization problem over Similarity Ratio. We further provide theoretical analysis on the optimization lower bound of different optimization methods, which could be used to identify the most appropriate algorithm for different experimental settings. The extensive experiments on ImageNet, Caltech256 and CUB-200-2011 demonstrate that our proposed method is effective in selecting a better base dataset.

Citations (26)

Summary

We haven't generated a summary for this paper yet.