Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Constitutive Relations using Symmetric Positive Definite Neural Networks (2004.00265v1)

Published 1 Apr 2020 in math.NA and cs.NA

Abstract: We present the Cholesky-factored symmetric positive definite neural network (SPD-NN) for modeling constitutive relations in dynamical equations. Instead of directly predicting the stress, the SPD-NN trains a neural network to predict the Cholesky factor of a tangent stiffness matrix, based on which the stress is calculated in the incremental form. As a result of the special structure, SPD-NN weakly imposes convexity on the strain energy function, satisfies time consistency for path-dependent materials, and therefore improves numerical stability, especially when the SPD-NN is used in finite element simulations. Depending on the types of available data, we propose two training methods, namely direct training for strain and stress pairs and indirect training for loads and displacement pairs. We demonstrate the effectiveness of SPD-NN on hyperelastic, elasto-plastic, and multiscale fiber-reinforced plate problems from solid mechanics. The generality and robustness of the SPD-NN make it a promising tool for a wide range of constitutive modeling applications.

Citations (129)

Summary

We haven't generated a summary for this paper yet.