Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enriching Consumer Health Vocabulary Using Enhanced GloVe Word Embedding (2004.00150v2)

Published 31 Mar 2020 in cs.CL, cs.IR, cs.LG, and stat.ML

Abstract: Open-Access and Collaborative Consumer Health Vocabulary (OAC CHV, or CHV for short), is a collection of medical terms written in plain English. It provides a list of simple, easy, and clear terms that laymen prefer to use rather than an equivalent professional medical term. The National Library of Medicine (NLM) has integrated and mapped the CHV terms to their Unified Medical Language System (UMLS). These CHV terms mapped to 56000 professional concepts on the UMLS. We found that about 48% of these laymen's terms are still jargon and matched with the professional terms on the UMLS. In this paper, we present an enhanced word embedding technique that generates new CHV terms from a consumer-generated text. We downloaded our corpus from a healthcare social media and evaluated our new method based on iterative feedback to word embedding using ground truth built from the existing CHV terms. Our feedback algorithm outperformed unmodified GLoVe and new CHV terms have been detected.

Citations (8)

Summary

We haven't generated a summary for this paper yet.