2000 character limit reached
Crowdsourced Labeling for Worker-Task Specialization Model (2004.00101v2)
Published 21 Mar 2020 in cs.HC, cs.LG, and stat.ML
Abstract: We consider crowdsourced labeling under a $d$-type worker-task specialization model, where each worker and task is associated with one particular type among a finite set of types and a worker provides a more reliable answer to tasks of the matched type than to tasks of unmatched types. We design an inference algorithm that recovers binary task labels (up to any given recovery accuracy) by using worker clustering, worker skill estimation and weighted majority voting. The designed inference algorithm does not require any information about worker/task types, and achieves any targeted recovery accuracy with the best known performance (minimum number of queries per task).
- Doyeon Kim (26 papers)
- Hye Won Chung (30 papers)