Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Take the Scenic Route: Improving Generalization in Vision-and-Language Navigation (2003.14269v1)

Published 31 Mar 2020 in cs.CV

Abstract: In the Vision-and-Language Navigation (VLN) task, an agent with egocentric vision navigates to a destination given natural language instructions. The act of manually annotating these instructions is timely and expensive, such that many existing approaches automatically generate additional samples to improve agent performance. However, these approaches still have difficulty generalizing their performance to new environments. In this work, we investigate the popular Room-to-Room (R2R) VLN benchmark and discover that what is important is not only the amount of data you synthesize, but also how you do it. We find that shortest path sampling, which is used by both the R2R benchmark and existing augmentation methods, encode biases in the action space of the agent which we dub as action priors. We then show that these action priors offer one explanation toward the poor generalization of existing works. To mitigate such priors, we propose a path sampling method based on random walks to augment the data. By training with this augmentation strategy, our agent is able to generalize better to unknown environments compared to the baseline, significantly improving model performance in the process.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Felix Yu (62 papers)
  2. Zhiwei Deng (33 papers)
  3. Karthik Narasimhan (82 papers)
  4. Olga Russakovsky (62 papers)
Citations (16)