Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long Short-Term Relation Networks for Video Action Detection (2003.14065v1)

Published 31 Mar 2020 in cs.CV

Abstract: It has been well recognized that modeling human-object or object-object relations would be helpful for detection task. Nevertheless, the problem is not trivial especially when exploring the interactions between human actor, object and scene (collectively as human-context) to boost video action detectors. The difficulty originates from the aspect that reliable relations in a video should depend on not only short-term human-context relation in the present clip but also the temporal dynamics distilled over a long-range span of the video. This motivates us to capture both short-term and long-term relations in a video. In this paper, we present a new Long Short-Term Relation Networks, dubbed as LSTR, that novelly aggregates and propagates relation to augment features for video action detection. Technically, Region Proposal Networks (RPN) is remoulded to first produce 3D bounding boxes, i.e., tubelets, in each video clip. LSTR then models short-term human-context interactions within each clip through spatio-temporal attention mechanism and reasons long-term temporal dynamics across video clips via Graph Convolutional Networks (GCN) in a cascaded manner. Extensive experiments are conducted on four benchmark datasets, and superior results are reported when comparing to state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Dong Li (429 papers)
  2. Ting Yao (127 papers)
  3. Zhaofan Qiu (37 papers)
  4. Houqiang Li (236 papers)
  5. Tao Mei (209 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.