Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Amharic Abstractive Text Summarization (2003.13721v1)

Published 30 Mar 2020 in cs.CL and cs.LG

Abstract: Text Summarization is the task of condensing long text into just a handful of sentences. Many approaches have been proposed for this task, some of the very first were building statistical models (Extractive Methods) capable of selecting important words and copying them to the output, however these models lacked the ability to paraphrase sentences, as they simply select important words without actually understanding their contexts nor understanding their meaning, here comes the use of Deep Learning based architectures (Abstractive Methods), which effectively tries to understand the meaning of sentences to build meaningful summaries. In this work we discuss one of these new novel approaches which combines curriculum learning with Deep Learning, this model is called Scheduled Sampling. We apply this work to one of the most widely spoken African languages which is the Amharic Language, as we try to enrich the African NLP community with top-notch Deep Learning architectures.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Amr M. Zaki (2 papers)
  2. Mahmoud I. Khalil (1 paper)
  3. Hazem M. Abbas (4 papers)
Citations (1)