Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vox2Vox: 3D-GAN for Brain Tumour Segmentation (2003.13653v3)

Published 19 Mar 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histological sub-regions, i.e., peritumoral edema, necrotic core, enhancing and non-enhancing tumour core. Although brain tumours can easily be detected using multi-modal MRI, accurate tumor segmentation is a challenging task. Hence, using the data provided by the BraTS Challenge 2020, we propose a 3D volume-to-volume Generative Adversarial Network for segmentation of brain tumours. The model, called Vox2Vox, generates realistic segmentation outputs from multi-channel 3D MR images, segmenting the whole, core and enhancing tumor with mean values of 87.20%, 81.14%, and 78.67% as dice scores and 6.44mm, 24.36mm, and 18.95mm for Hausdorff distance 95 percentile for the BraTS testing set after ensembling 10 Vox2Vox models obtained with a 10-fold cross-validation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Marco Domenico Cirillo (2 papers)
  2. David Abramian (8 papers)
  3. Anders Eklund (38 papers)
Citations (104)

Summary

We haven't generated a summary for this paper yet.