On Maximal Functions With Curvature (2003.13460v3)
Abstract: We exhibit a class of "relatively curved" $\vec{\gamma}(t) := (\gamma_1(t),\dots,\gamma_n(t))$, so that the pertaining multi-linear maximal function satisfies the sharp range of H\"{o}lder exponents, [ \left| \sup_{r > 0} \ \frac{1}{r} \int_{0}r \prod_{i=1}n |f_i(x-\gamma_i(t))| \ dt \right|{Lp(\mathbb{R})} \leq C \cdot \prod{i=1}n | f_j |{L{p_j}(\mathbb{R})} ] whenever $\frac{1}{p} = \sum{j=1}n \frac{1}{p_j}$, where $p_j > 1$ and $p \geq p_{\vec{\gamma}}$, where $1 \geq p_{\vec{\gamma}} > 1/n$ for certain curves. For instance, $p_{\vec{\gamma}} = 1/n+$ for the case of fractional monomials, [ \vec{\gamma}(t) = (t{\alpha_1},\dots,t{\alpha_n}), \; \; \; \alpha_1 < \dots < \alpha_n.] Two sample applications of our method are as follows: For any measurable $u_1,\dots,u_n : \mathbb{R}{n} \to \mathbb{R}$, with $u_i$ independent of the $i$th coordinate vector, and any relatively curved $\vec{\gamma}$, [ \lim_{r \to 0} \ \frac{1}{r} \int_0r F\big(x_1 - u_1(x) \cdot \gamma_1(t),\dots,x_n - u_n(x) \cdot \gamma_n(t) \big) \ dt = F(x_1,\dots,x_n), \; \; \; a.e. ] for every $F \in Lp(\mathbb{R}n), \ p > 1$. Every appropriately normalized set $A \subset [0,1]$ of sufficiently large Hausdorff dimension contains the progression, [ { x, x-\gamma_1(t),\dots,x - \gamma_n(t) } \subset A, ] for some $t \geq c_{\vec{\gamma}} > 0$ strictly bounded away from zero, depending on $\vec{\gamma}$.