Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cost-effective search for lower-error region in material parameter space using multifidelity Gaussian process modeling (2003.13428v1)

Published 15 Mar 2020 in cond-mat.mtrl-sci, cs.LG, physics.comp-ph, and stat.ML

Abstract: Information regarding precipitate shapes is critical for estimating material parameters. Hence, we considered estimating a region of material parameter space in which a computational model produces precipitates having shapes similar to those observed in the experimental images. This region, called the lower-error region (LER), reflects intrinsic information of the material contained in the precipitate shapes. However, the computational cost of LER estimation can be high because the accurate computation of the model is required many times to better explore parameters. To overcome this difficulty, we used a Gaussian-process-based multifidelity modeling, in which training data can be sampled from multiple computations with different accuracy levels (fidelity). Lower-fidelity samples may have lower accuracy, but the computational cost is lower than that for higher-fidelity samples. Our proposed sampling procedure iteratively determines the most cost-effective pair of a point and a fidelity level for enhancing the accuracy of LER estimation. We demonstrated the efficiency of our method through estimation of the interface energy and lattice mismatch between MgZn2 and {\alpha}-Mg phases in an Mg-based alloy. The results showed that the sampling cost required to obtain accurate LER estimation could be drastically reduced.

Citations (1)

Summary

We haven't generated a summary for this paper yet.