Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modulating Bottom-Up and Top-Down Visual Processing via Language-Conditional Filters (2003.12739v3)

Published 28 Mar 2020 in cs.CV, cs.CL, and cs.LG

Abstract: How to best integrate linguistic and perceptual processing in multi-modal tasks that involve language and vision is an important open problem. In this work, we argue that the common practice of using language in a top-down manner, to direct visual attention over high-level visual features, may not be optimal. We hypothesize that the use of language to also condition the bottom-up processing from pixels to high-level features can provide benefits to the overall performance. To support our claim, we propose a U-Net-based model and perform experiments on two language-vision dense-prediction tasks: referring expression segmentation and language-guided image colorization. We compare results where either one or both of the top-down and bottom-up visual branches are conditioned on language. Our experiments reveal that using language to control the filters for bottom-up visual processing in addition to top-down attention leads to better results on both tasks and achieves competitive performance. Our linguistic analysis suggests that bottom-up conditioning improves segmentation of objects especially when input text refers to low-level visual concepts. Code is available at https://github.com/ilkerkesen/bvpr.

Citations (1)

Summary

We haven't generated a summary for this paper yet.