Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DaST: Data-free Substitute Training for Adversarial Attacks (2003.12703v2)

Published 28 Mar 2020 in cs.CR, cs.CV, and cs.LG

Abstract: Machine learning models are vulnerable to adversarial examples. For the black-box setting, current substitute attacks need pre-trained models to generate adversarial examples. However, pre-trained models are hard to obtain in real-world tasks. In this paper, we propose a data-free substitute training method (DaST) to obtain substitute models for adversarial black-box attacks without the requirement of any real data. To achieve this, DaST utilizes specially designed generative adversarial networks (GANs) to train the substitute models. In particular, we design a multi-branch architecture and label-control loss for the generative model to deal with the uneven distribution of synthetic samples. The substitute model is then trained by the synthetic samples generated by the generative model, which are labeled by the attacked model subsequently. The experiments demonstrate the substitute models produced by DaST can achieve competitive performance compared with the baseline models which are trained by the same train set with attacked models. Additionally, to evaluate the practicability of the proposed method on the real-world task, we attack an online machine learning model on the Microsoft Azure platform. The remote model misclassifies 98.35% of the adversarial examples crafted by our method. To the best of our knowledge, we are the first to train a substitute model for adversarial attacks without any real data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Mingyi Zhou (15 papers)
  2. Jing Wu (182 papers)
  3. Yipeng Liu (89 papers)
  4. Shuaicheng Liu (95 papers)
  5. Ce Zhu (85 papers)
Citations (134)

Summary

We haven't generated a summary for this paper yet.