Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GAN-based Priors for Quantifying Uncertainty (2003.12597v1)

Published 27 Mar 2020 in stat.ML, cs.CV, cs.LG, and physics.comp-ph

Abstract: Bayesian inference is used extensively to quantify the uncertainty in an inferred field given the measurement of a related field when the two are linked by a mathematical model. Despite its many applications, Bayesian inference faces challenges when inferring fields that have discrete representations of large dimension, and/or have prior distributions that are difficult to characterize mathematically. In this work we demonstrate how the approximate distribution learned by a deep generative adversarial network (GAN) may be used as a prior in a Bayesian update to address both these challenges. We demonstrate the efficacy of this approach on two distinct, and remarkably broad, classes of problems. The first class leads to supervised learning algorithms for image classification with superior out of distribution detection and accuracy, and for image inpainting with built-in variance estimation. The second class leads to unsupervised learning algorithms for image denoising and for solving physics-driven inverse problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Dhruv V. Patel (5 papers)
  2. Assad A. Oberai (14 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.