Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Twist formulas for one-row colored $A_2$ webs and $\mathfrak{sl}_3$ tails of $(2,2m)$-torus links (2003.12278v2)

Published 27 Mar 2020 in math.GT and math.QA

Abstract: The $\mathfrak{sl}3$ colored Jones polynomial $J{\lambda}{\mathfrak{sl}_3}(L)$ is obtained by coloring the link components with two-row Young diagram $\lambda$. Although it is difficult to compute $J_{\lambda}{\mathfrak{sl}_3}(L)$ in general, we can calculate it by using Kuperberg's $A_2$ skein relation. In this paper, we show some formulas for twisted two strands colored by one-row Young diagram in $A_2$ web space and compute $J_{(n,0)}{\mathfrak{sl}_3}(T(2,2m))$ for an oriented $(2,2m)$-torus link. These explicit formulas derives the $\mathfrak{sl}_3$ tail of $T(2,2m)$. They also give explicit descriptions of the $\mathfrak{sl}_3$ false theta series with one-row coloring because the $\mathfrak{sl}_2$ tail of $T(2,2m)$ is known as the false theta series.

Citations (1)

Summary

We haven't generated a summary for this paper yet.