Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Instance Credibility Inference for Few-Shot Learning (2003.11853v2)

Published 26 Mar 2020 in cs.CV and cs.LG

Abstract: Few-shot learning (FSL) aims to recognize new objects with extremely limited training data for each category. Previous efforts are made by either leveraging meta-learning paradigm or novel principles in data augmentation to alleviate this extremely data-scarce problem. In contrast, this paper presents a simple statistical approach, dubbed Instance Credibility Inference (ICI) to exploit the distribution support of unlabeled instances for few-shot learning. Specifically, we first train a linear classifier with the labeled few-shot examples and use it to infer the pseudo-labels for the unlabeled data. To measure the credibility of each pseudo-labeled instance, we then propose to solve another linear regression hypothesis by increasing the sparsity of the incidental parameters and rank the pseudo-labeled instances with their sparsity degree. We select the most trustworthy pseudo-labeled instances alongside the labeled examples to re-train the linear classifier. This process is iterated until all the unlabeled samples are included in the expanded training set, i.e. the pseudo-label is converged for unlabeled data pool. Extensive experiments under two few-shot settings show that our simple approach can establish new state-of-the-arts on four widely used few-shot learning benchmark datasets including miniImageNet, tieredImageNet, CIFAR-FS, and CUB. Our code is available at: https://github.com/Yikai-Wang/ICI-FSL

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yikai Wang (78 papers)
  2. Chengming Xu (26 papers)
  3. Chen Liu (206 papers)
  4. Li Zhang (690 papers)
  5. Yanwei Fu (199 papers)
Citations (154)