Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning transferable and discriminative features for unsupervised domain adaptation (2003.11723v2)

Published 26 Mar 2020 in cs.LG and stat.ML

Abstract: Although achieving remarkable progress, it is very difficult to induce a supervised classifier without any labeled data. Unsupervised domain adaptation is able to overcome this challenge by transferring knowledge from a labeled source domain to an unlabeled target domain. Transferability and discriminability are two key criteria for characterizing the superiority of feature representations to enable successful domain adaptation. In this paper, a novel method called \textit{learning TransFerable and Discriminative Features for unsupervised domain adaptation} (TFDF) is proposed to optimize these two objectives simultaneously. On the one hand, distribution alignment is performed to reduce domain discrepancy and learn more transferable representations. Instead of adopting \textit{Maximum Mean Discrepancy} (MMD) which only captures the first-order statistical information to measure distribution discrepancy, we adopt a recently proposed statistic called \textit{Maximum Mean and Covariance Discrepancy} (MMCD), which can not only capture the first-order statistical information but also capture the second-order statistical information in the reproducing kernel Hilbert space (RKHS). On the other hand, we propose to explore both local discriminative information via manifold regularization and global discriminative information via minimizing the proposed \textit{class confusion} objective to learn more discriminative features, respectively. We integrate these two objectives into the \textit{Structural Risk Minimization} (RSM) framework and learn a domain-invariant classifier. Comprehensive experiments are conducted on five real-world datasets and the results verify the effectiveness of the proposed method.

Citations (4)

Summary

We haven't generated a summary for this paper yet.