Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Newton-Okounkov bodies of flag varieties and combinatorial mutations (2003.10837v2)

Published 21 Mar 2020 in math.RT, math.AG, and math.CO

Abstract: A Newton-Okounkov body is a convex body constructed from a projective variety with a globally generated line bundle and with a higher rank valuation on the function field, which gives a systematic method of constructing toric degenerations of projective varieties. Its combinatorial properties heavily depend on the choice of a valuation, and it is a fundamental problem to relate Newton-Okounkov bodies associated with different kinds of valuations. In this paper, we address this problem for flag varieties using the framework of combinatorial mutations which was introduced in the context of mirror symmetry for Fano manifolds. By applying iterated combinatorial mutations, we connect specific Newton-Okounkov bodies of flag varieties including string polytopes, Nakashima-Zelevinsky polytopes, and FFLV polytopes.

Summary

We haven't generated a summary for this paper yet.