Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computer-Assisted Verification of Four Interval Arithmetic Operators (2003.10623v2)

Published 24 Mar 2020 in cs.LO

Abstract: Interval arithmetic libraries provide the four elementary arithmetic operators for operand intervals bounded by floating-point numbers. Actual implementations need to make a large case analysis that considers, e.g., magnitude relations between all pairs of argument bounds, positional relations between the arguments and zero, and handling of the special values, infinities and NaN. Their correctness is not obvious as they are implemented by human hands, which comes to be critical for the reliability. This work provides a mechanically-verified interval arithmetic library. For this purpose, we utilize the Why3 platform equipped with a specification language for annotated programs and back-end theorem provers. We conduct several proof tasks for each of three properties of the target code: validity, soundness, and tightness; zero division exception handling is also verified for the division code. To accomplish the proof, we propose several techniques for specification/verification. First, we specify additional lemmas that support deductions made by back-end SMT solvers, which enable to discharge proof obligations in floating-point arithmetic containing nonlinear terms. Second, we examine the annotation of tightness, which requires to assume that a computation may result in NaN; we propose specific extremum operators for this purpose. In the experiments, applying the techniques in conjunction with the Alt-Ergo SMT solver and the Coq proof assistant proved the entire code.

Citations (1)

Summary

We haven't generated a summary for this paper yet.