Papers
Topics
Authors
Recent
2000 character limit reached

Bott vanishing using GIT and quantization

Published 24 Mar 2020 in math.AG | (2003.10617v3)

Abstract: A smooth projective variety $Y$ is said to satisfy Bott vanishing if $\Omega_Yj\otimes L$ has no higher cohomology for every $j$ and every ample line bundle $L$. Few examples are known to satisfy this property. Among them are toric varieties, as well as the quintic del Pezzo surface, recently shown by Totaro. Here we present a new class of varieties satisfying Bott vanishing, namely stable GIT quotients of $(\mathbb{P}1)n$ by the action of $PGL_2$, over an algebraically closed field of characteristic zero. For this, we use the work done by Halpern-Leistner on the derived category of a GIT quotient, and his version of the quantization theorem. We also see that, using similar techniques, we can recover Bott vanishing for the toric case.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.