Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New incompressible symmetric tensor categories in positive characteristic (2003.10499v4)

Published 23 Mar 2020 in math.RT, math.CT, and math.QA

Abstract: We propose a method of constructing abelian envelopes of symmetric rigid monoidal Karoubian categories over an algebraically closed field $\bf k$. If ${\rm char}({\bf k})=p>0$, we use this method to construct generalizations ${\rm Ver}{pn}$, ${\rm Ver}{pn}+$ of the incompressible abelian symmetric tensor categories defined in arXiv:1807.05549 for $p=2$ and by Gelfand-Kazhdan and Georgiev-Mathieu for $n=1$. Namely, ${\rm Ver}{pn}$ is the abelian envelope of the quotient of the category of tilting modules for $SL_2(\bf k)$ by the $n$-th Steinberg module, and ${\rm Ver}{pn}+$ is its subcategory generated by $PGL_2(\bf k)$-modules. We show that ${\rm Ver}{pn}$ are reductions to characteristic $p$ of Verlinde braided tensor categories in characteristic zero, which explains the notation. We study the structure of these categories in detail, and in particular show that they categorify the real cyclotomic rings $\mathbb{Z}[2\cos(2\pi/pn)]$, and that ${\rm Ver}{pn}$ embeds into ${\rm Ver}{p{n+1}}$. We conjecture that every symmetric tensor category of moderate growth over $\bf k$ admits a fiber functor to the union ${\rm Ver}{p\infty}$ of the nested sequence ${\rm Ver}{p}\subset {\rm Ver}{p2}\subset\cdots$. This would provide an analog of Deligne's theorem in characteristic zero and a generalization of the result of arXiv:1503.01492, which shows that this conjecture holds for fusion categories, and then moreover the fiber functor lands in ${\rm Ver}_p$.

Summary

We haven't generated a summary for this paper yet.