Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extension theorem and representation formula in non-axially symmetric domains for slice regular functions (2003.10487v2)

Published 23 Mar 2020 in math.CV

Abstract: Slice analysis is a generalization of the theory of holomorphic functions of one complex variable to quaternions. Among the new phenomena which appear in this context, there is the fact that the convergence domain of $f(q)=\Sigma_{n\in\mathbb{N}}(q-p){*n} a_n$, given by a $\sigma$-ball $\Sigma(p,r)$, is not open in $\mathbb{H}$ unless $p\in\mathbb{R}$. This motivates us to investigate, in this article, what is a natural topology for slice regular functions. It turns out that the natural topology is the so-called slice topology, which is different from the Euclidean topology and nicely adapts to the slice structure of quaternions. We extend the function theory of slice regular functions to any domains in the slice topology. Many fundamental results in the classical slice analysis for axially symmetric domains fail in our general setting. We can even construct a counterexample to show that a slice regular function in a domain cannot be extended to an axially symmetric domain. In order to provide positive results we need to consider so-called path-slice functions instead of slice functions. Along this line, we can establish an extension theorem and a representation formula in a slice-domain.

Summary

We haven't generated a summary for this paper yet.