Papers
Topics
Authors
Recent
2000 character limit reached

On the intersection distribution of degree three polynomials and related topics

Published 23 Mar 2020 in math.CO, cs.IT, and math.IT | (2003.10040v1)

Abstract: The intersection distribution of a polynomial $f$ over finite field $\mathbb{F}_q$ was recently proposed in Li and Pott (arXiv:2003.06678v1), which concerns the collective behaviour of a collection of polynomials ${f(x)+cx \mid c \in \mathbb{F}_q}$. The intersection distribution has an underlying geometric interpretation, which indicates the intersection pattern between the graph of $f$ and the lines in the affine plane $AG(2,q)$. When $q$ is even, the long-standing open problem of classifying o-polynomials can be rephrased in a simple way, namely, classifying all polynomials which have the same intersection distribution as $x2$. Inspired by this connection, we proceed to consider the next simplest case and derive the intersection distribution for all degree three polynomials over $\mathbb{F}_q$ with $q$ both odd and even. Moreover, we initiate to classify all monomials having the same intersection distribution as $x3$, where some characterizations of such monomials are obtained and a conjecture is proposed. In addition, two applications of the intersection distributions of degree three polynomials are presented. The first one is the construction of nonisomorphic Steiner triple systems and the second one produces infinite families of Kakeya sets in affine planes with previously unknown sizes.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.