Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Adaptive Control Barrier Functions: An Adaptive & Data-Driven Approach to Safety (Extended Version) (2003.10028v2)

Published 22 Mar 2020 in eess.SY and cs.SY

Abstract: A new framework is developed for control of constrained nonlinear systems with structured parametric uncertainties. Forward invariance of a safe set is achieved through online parameter adaptation and data-driven model estimation. The new adaptive data-driven safety paradigm is merged with a recent adaptive control algorithm for systems nominally contracting in closed-loop. This unification is more general than other safety controllers as closed-loop contraction does not require the system be invertible or in a particular form. Additionally, the approach is less expensive than nonlinear model predictive control as it does not require a full desired trajectory, but rather only a desired terminal state. The approach is illustrated on the pitch dynamics of an aircraft with uncertain nonlinear aerodynamics.

Citations (1)

Summary

We haven't generated a summary for this paper yet.