Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ellipsoidal Subspace Support Vector Data Description (2003.09504v1)

Published 20 Mar 2020 in cs.LG, cs.AI, and stat.ML

Abstract: In this paper, we propose a novel method for transforming data into a low-dimensional space optimized for one-class classification. The proposed method iteratively transforms data into a new subspace optimized for ellipsoidal encapsulation of target class data. We provide both linear and non-linear formulations for the proposed method. The method takes into account the covariance of the data in the subspace; hence, it yields a more generalized solution as compared to Subspace Support Vector Data Description for a hypersphere. We propose different regularization terms expressing the class variance in the projected space. We compare the results with classic and recently proposed one-class classification methods and achieve better results in the majority of cases. The proposed method is also noticed to converge much faster than recently proposed Subspace Support Vector Data Description.

Citations (15)

Summary

We haven't generated a summary for this paper yet.