Ellipsoidal Subspace Support Vector Data Description (2003.09504v1)
Abstract: In this paper, we propose a novel method for transforming data into a low-dimensional space optimized for one-class classification. The proposed method iteratively transforms data into a new subspace optimized for ellipsoidal encapsulation of target class data. We provide both linear and non-linear formulations for the proposed method. The method takes into account the covariance of the data in the subspace; hence, it yields a more generalized solution as compared to Subspace Support Vector Data Description for a hypersphere. We propose different regularization terms expressing the class variance in the projected space. We compare the results with classic and recently proposed one-class classification methods and achieve better results in the majority of cases. The proposed method is also noticed to converge much faster than recently proposed Subspace Support Vector Data Description.