Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Deep Learning Architecture for Decoding Imagined Speech from EEG (2003.09374v1)

Published 19 Mar 2020 in eess.SP, cs.LG, and stat.ML

Abstract: The recent advances in the field of deep learning have not been fully utilised for decoding imagined speech primarily because of the unavailability of sufficient training samples to train a deep network. In this paper, we present a novel architecture that employs deep neural network (DNN) for classifying the words "in" and "cooperate" from the corresponding EEG signals in the ASU imagined speech dataset. Nine EEG channels, which best capture the underlying cortical activity, are chosen using common spatial pattern (CSP) and are treated as independent data vectors. Discrete wavelet transform (DWT) is used for feature extraction. To the best of our knowledge, so far DNN has not been employed as a classifier in decoding imagined speech. Treating the selected EEG channels corresponding to each imagined word as independent data vectors helps in providing sufficient number of samples to train a DNN. For each test trial, the final class label is obtained by applying a majority voting on the classification results of the individual channels considered in the trial. We have achieved accuracies comparable to the state-of-the-art results. The results can be further improved by using a higher-density EEG acquisition system in conjunction with other deep learning techniques such as long short-term memory.

Citations (19)

Summary

We haven't generated a summary for this paper yet.