Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Crime Prediction Using Spatio-Temporal Data (2003.09322v1)

Published 11 Mar 2020 in cs.LG, cs.CY, and stat.ML

Abstract: A crime is a punishable offence that is harmful for an individual and his society. It is obvious to comprehend the patterns of criminal activity to prevent them. Research can help society to prevent and solve crime activates. Study shows that only 10 percent offenders commits 50 percent of the total offences. The enforcement team can respond faster if they have early information and pre-knowledge about crime activities of the different points of a city. In this paper, supervised learning technique is used to predict crimes with better accuracy. The proposed system predicts crimes by analyzing data-set that contains records of previously committed crimes and their patterns. The system stands on two main algorithms - i) decision tree, and ii) k-nearest neighbor. Random Forest algorithm and Adaboost are used to increase the accuracy of the prediction. Finally, oversampling is used for better accuracy. The proposed system is feed with a criminal-activity data set of twelve years of San Francisco city.

Citations (53)

Summary

We haven't generated a summary for this paper yet.