Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakly Supervised 3D Hand Pose Estimation via Biomechanical Constraints (2003.09282v2)

Published 20 Mar 2020 in cs.CV

Abstract: Estimating 3D hand pose from 2D images is a difficult, inverse problem due to the inherent scale and depth ambiguities. Current state-of-the-art methods train fully supervised deep neural networks with 3D ground-truth data. However, acquiring 3D annotations is expensive, typically requiring calibrated multi-view setups or labor intensive manual annotations. While annotations of 2D keypoints are much easier to obtain, how to efficiently leverage such weakly-supervised data to improve the task of 3D hand pose prediction remains an important open question. The key difficulty stems from the fact that direct application of additional 2D supervision mostly benefits the 2D proxy objective but does little to alleviate the depth and scale ambiguities. Embracing this challenge we propose a set of novel losses. We show by extensive experiments that our proposed constraints significantly reduce the depth ambiguity and allow the network to more effectively leverage additional 2D annotated images. For example, on the challenging freiHAND dataset using additional 2D annotation without our proposed biomechanical constraints reduces the depth error by only $15\%$, whereas the error is reduced significantly by $50\%$ when the proposed biomechanical constraints are used.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Adrian Spurr (11 papers)
  2. Umar Iqbal (50 papers)
  3. Pavlo Molchanov (70 papers)
  4. Otmar Hilliges (120 papers)
  5. Jan Kautz (215 papers)
Citations (137)

Summary

We haven't generated a summary for this paper yet.