Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a doubly critical system involving fractional Laplacian with partial weight (2003.08826v1)

Published 18 Mar 2020 in math.AP

Abstract: In this paper, we establish a new improved Sobolev inequality based on a weighted Morrey space. To be precise, there exists $C=C(n,m,s,\alpha)>0$ such that for any $u,v \in {\dot{H}}s(\mathbb{R}{n})$ and for any $\theta \in (\bar{\theta},1)$, it holds that \begin{equation} \label{eq0.3} \Big( \int_{ \mathbb{R}{n} } \frac{ |(uv)(y)|{\frac{2*_{s}(\alpha)}{2} } } { |y'|{\alpha} } dy \Big){ \frac{1}{ 2*_{s} (\alpha) }} \leq C ||u||{{\dot{H}}s(\mathbb{R}{n})}{\frac{\theta}{2}} ||v||{{\dot{H}}s(\mathbb{R}{n})}{\frac{\theta}{2}} ||(uv)||{\frac{1-\theta}{2}}_{ L{1,n-2s+r}(\mathbb{R}{n},|y'|{-r}) }, \end{equation} where $s !\in! (0,1)$, $0!<!\alpha!<!2s!<!n$, $2s!<!m!<!n$, $\bar{\theta}=\max { \frac{2}{2*_{s}(\alpha)}, 1-\frac{\alpha}{s}\cdot\frac{1}{2*_{s}(\alpha)}, \frac{2_{s}(\alpha)-\frac{\alpha}{s}}{2^_{s}(\alpha)-\frac{2\alpha}{m}} }$, $r=\frac{2\alpha}{ 2*_{s}(\alpha) }$ and $y!=!(y',y'') \in \mathbb{R}{m} \times \mathbb{R}{n-m}$. By using mountain pass lemma and (\ref{eq0.3}), we obtain a nontrivial weak solution to a doubly critical system involving fractional Laplacian in $\mathbb{R}{n}$ with partial weight in a direct way. Furthermore, we extend inequality (\ref{eq0.3}) to more general forms on purpose of studying some general systems with partial weight, involving p-Laplacian especially.

Summary

We haven't generated a summary for this paper yet.