Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Modes Exploring in Generative Adversarial Networks (2003.08752v1)

Published 5 Mar 2020 in cs.CV

Abstract: In conditional Generative Adversarial Networks (cGANs), when two different initial noises are concatenated with the same conditional information, the distance between their outputs is relatively smaller, which makes minor modes likely to collapse into large modes. To prevent this happen, we proposed a hierarchical mode exploring method to alleviate mode collapse in cGANs by introducing a diversity measurement into the objective function as the regularization term. We also introduced the Expected Ratios of Expansion (ERE) into the regularization term, by minimizing the sum of differences between the real change of distance and ERE, we can control the diversity of generated images w.r.t specific-level features. We validated the proposed algorithm on four conditional image synthesis tasks including categorical generation, paired and un-paired image translation and text-to-image generation. Both qualitative and quantitative results show that the proposed method is effective in alleviating the mode collapse problem in cGANs, and can control the diversity of output images w.r.t specific-level features.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mengxiao Hu (4 papers)
  2. Jinlong Li (50 papers)
  3. Maolin Hu (1 paper)
  4. Tao Hu (146 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.