Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chernoff-type Concentration of Empirical Probabilities in Relative Entropy (2003.08614v3)

Published 19 Mar 2020 in math.ST and stat.TH

Abstract: We study the relative entropy of the empirical probability vector with respect to the true probability vector in multinomial sampling of $k$ categories, which, when multiplied by sample size $n$, is also the log-likelihood ratio statistic. We generalize a recent result and show that the moment generating function of the statistic is bounded by a polynomial of degree $n$ on the unit interval, uniformly over all true probability vectors. We characterize the family of polynomials indexed by $(k,n)$ and obtain explicit formulae. Consequently, we develop Chernoff-type tail bounds, including a closed-form version from a large sample expansion of the bound minimizer. Our bound dominates the classic method-of-types bound and is competitive with the state of the art. We demonstrate with an application to estimating the proportion of unseen butterflies.

Citations (9)

Summary

We haven't generated a summary for this paper yet.