Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Identifying and Mitigating Bias in the Estimation of the COVID-19 Case Fatality Rate (2003.08592v6)

Published 19 Mar 2020 in q-bio.QM and q-bio.PE

Abstract: The relative case fatality rates (CFRs) between groups and countries are key measures of relative risk that guide policy decisions regarding scarce medical resource allocation during the ongoing COVID-19 pandemic. In the middle of an active outbreak when surveillance data is the primary source of information, estimating these quantities involves compensating for competing biases in time series of deaths, cases, and recoveries. These include time- and severity- dependent reporting of cases as well as time lags in observed patient outcomes. In the context of COVID-19 CFR estimation, we survey such biases and their potential significance. Further, we analyze theoretically the effect of certain biases, like preferential reporting of fatal cases, on naive estimators of CFR. We provide a partially corrected estimator of these naive estimates that accounts for time lag and imperfect reporting of deaths and recoveries. We show that collection of randomized data by testing the contacts of infectious individuals regardless of the presence of symptoms would mitigate bias by limiting the covariance between diagnosis and death. Our analysis is supplemented by theoretical and numerical results and a simple and fast open-source codebase at https://github.com/aangelopoulos/cfr-covid-19 .

Summary

We haven't generated a summary for this paper yet.