Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization (2003.08375v2)

Published 18 Mar 2020 in cs.CV

Abstract: Weakly Supervised Object Localization (WSOL) methods only require image level labels as opposed to expensive bounding box annotations required by fully supervised algorithms. We study the problem of learning localization model on target classes with weakly supervised image labels, helped by a fully annotated source dataset. Typically, a WSOL model is first trained to predict class generic objectness scores on an off-the-shelf fully supervised source dataset and then it is progressively adapted to learn the objects in the weakly supervised target dataset. In this work, we argue that learning only an objectness function is a weak form of knowledge transfer and propose to learn a classwise pairwise similarity function that directly compares two input proposals as well. The combined localization model and the estimated object annotations are jointly learned in an alternating optimization paradigm as is typically done in standard WSOL methods. In contrast to the existing work that learns pairwise similarities, our approach optimizes a unified objective with convergence guarantee and it is computationally efficient for large-scale applications. Experiments on the COCO and ILSVRC 2013 detection datasets show that the performance of the localization model improves significantly with the inclusion of pairwise similarity function. For instance, in the ILSVRC dataset, the Correct Localization (CorLoc) performance improves from 72.8% to 78.2% which is a new state-of-the-art for WSOL task in the context of knowledge transfer.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Amir Rahimi (11 papers)
  2. Amirreza Shaban (16 papers)
  3. Thalaiyasingam Ajanthan (33 papers)
  4. Richard Hartley (73 papers)
  5. Byron Boots (120 papers)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com