Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Dynamic Reduction Network for Point Clouds (2003.08013v1)

Published 18 Mar 2020 in cs.CV, cs.LG, eess.IV, and hep-ex

Abstract: Classifying whole images is a classic problem in machine learning, and graph neural networks are a powerful methodology to learn highly irregular geometries. It is often the case that certain parts of a point cloud are more important than others when determining overall classification. On graph structures this started by pooling information at the end of convolutional filters, and has evolved to a variety of staged pooling techniques on static graphs. In this paper, a dynamic graph formulation of pooling is introduced that removes the need for predetermined graph structure. It achieves this by dynamically learning the most important relationships between data via an intermediate clustering. The network architecture yields interesting results considering representation size and efficiency. It also adapts easily to a large number of tasks from image classification to energy regression in high energy particle physics.

Citations (9)

Summary

We haven't generated a summary for this paper yet.